Hemochromatosis Quotes in Survival of the Sickest
Our relationship with iron is much more complex than it’s been considered traditionally. It’s essential—but it also provides a proverbial leg up to just about every biological threat to our lives. […] Parasites hunt us for our iron; cancer cells thrive on our iron. Finding, controlling, and using iron is the game of life. For bacteria, fungi, and protozoa, human blood and tissue are an iron gold mine. Add too much iron to the human system and you may just be loading up the buffet table.
Then, in 1347, the plague begins its march across Europe. People who have the hemochromatosis mutation are especially resistant to infection because of their iron-starved macrophages. So, though it will kill them decades later, they are much more likely than people without hemochromatosis to survive the plague, reproduce, and pass the mutation on to their children. In a population where most people don’t survive until middle age, a genetic trait that will kill you when you get there but increases your chance of arriving is—well, something to ask for.
Today, we know that Aran suffered the effects of the most common genetic disorder in people of European descent—hemochromatosis, a disorder that may very well have helped his ancestors to survive the plague.
Today, Aran’s health has been restored through bloodletting, one of the oldest medical practices on earth.
Today, we understand much more about the complex interrelationship of our bodies, iron, infection, and conditions like hemochromatosis and anemia.
The Younger Dryas had arrived, and the world was changed.
Though humanity would survive, the short-term impact, especially for those populations that had moved north, was devastating. In less than a generation, virtually every learned method of survival—from the shelters they built to the hunting they practiced—was inadequate.
But what if a temporary diabetes-like condition occurred in a person who had significant brown fat living in an ice age environment? Food would probably be limited, so dietary blood-sugar load would already be low, and brown fat would convert most of that to heat, so the ice age “diabetic’s” blood sugar, even with less insulin, might never reach dangerous levels. Modern-day diabetics, on the other hand, with little or no brown fat, and little or no expo- sure to constant cold, have no use—and thus no outlet—for the sugar that accumulates in their blood.
Many scientists believe cancer prevention is the “reason” cells have evolved with a limit on the number of times they can reproduce. The flip side to the Hayflick limit, of course—compromise, compromise—is aging. Once cells hit the limit, future reproductions don’t really work and things start to break down.
I hope that you’ll come away from this book with an appreciation of three things. First, that life is in a constant state of creation. Evolution isn’t over—it’s all around you, changing as we go. Second, that nothing in our world exists in isolation. We—meaning humans and animals and plants and microbes and everything else—are all evolving together. And third, that our relationship with disease is often much more complex than we may have previously realized.